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Penchant for building terrestrial

planets (Dressing & Charbonneau
2013)
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Formation and Evolution of Stars and Disks
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Formation and Evolution of Stars and Disks
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Disk Removal Mechanisms
(Radiative Examples)

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

Poynting-Robertson

o
Photoevaporation
Radiat; P Frame S Frame S ,
(Radiation Pressure) ssss ssss
of $583 of  ZI:if
e S the
grain  Siii star Loio
-
Evaporation flow
* o0 ’ ?.e’0 000 %00
Evaporation flow
| (\/\/\/Q\/\/\/» A%
NN PaVAVA AN
Adapted from Williams & Cieza (201 I) g é
Crédit: Michael Schmid
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Disk Removal Mechanisms
(Radiative Examples)
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Disk Removal Mechanisms

(Grain Growth/Planets)
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Disk Removal Mechanisms

(Gram Growth/ Planets)
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Motivating Questions

.

< What 1s the timescale for disk dispersal around low-mass
stars?

< Multiple mechanisms play an important role in removing disks
around stars. What are the dominant dispersal mechanisms for
low-mass stars, and how does that affect their disk evolution?
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What’s up with M dwarts?

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

WHERE ARE THE M DWARF DISKS OLDER THAN 10 MILLION YEARS?

PeTER PLAVCHAN, M. JURA, AND S. J. Lipscy’
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095; plavchan@astro.ucla.edu
Received 2004 October 18, accepted 2005 June 6

ABSTRACT

We present 11.7 um observations of nine late-type dwarfs obtained at the Keck I 10 m telescope in 2002
December and 2003 April. Our targets were selected for their youth or apparent JRAS 12 um excess. For all nine
sources, excess infrared emission is not detected. We find that stellar wind drag can dominate the circumstellar grain
removal and plausibly explain the dearth of M dwarf systems older than 10 Myr with currently detected infrared

excesses. We predict that M dwarfs possess fractional infrared excesses on the order of Lig/L. ~ 10~° and that this
may be detectable with future efforts.
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WARM DUST AROUND COOL STARS: FIELD M DWAREFES WITH WISE 12 OR 22 pym EXCESS EMISSION

CHRISTOPHER A. THEISSEN AND ANDREW A. WEST
Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA; ctheisse @bu.edu
Received 2014 April 23; accepted 2014 August 27; published 2014 October 2

ABSTRACT

Using the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) spectroscopic catalog, we searched the WISE
AlIWISE catalog to investigate the occurrence of warm dust, as inferred from IR excesses, around field M dwarfs
(dMs). We developed SDSS/WISE color selection criteria to identify 175 dMs (from 70,841) that show IR flux
greater than the typical dM photosphere levels at 12 and/or 22 um, including seven new stars within the Orion OB1
footprint. We characterize the dust populations inferred from each IR excess and investigate the possibility that
these excesses could arise from ultracool binary companions by modeling combined spectral energy distributions.
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Strength in Numbers
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Other Explanations for IR Excess -
Ultra-cool Binaries
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Other Explanations for IR Excess -
chance alignment with a Galaxy
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Other Explanations for IR Excess -
chance alignment with a Galaxy
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T'he Final Sample
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Where did we find them?

Galactic Coordinates
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Where did we find them?
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ombining Surveys for SEDs
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Combining Surveys for SEDs
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Combining Surveys for SEDs
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Combining Surveys for SEDs
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Combining Surveys for SEDs
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Combining Surveys for SEDs
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Aging a Star:
Part 1: Surface Gravity aka log(g)
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Aging a Star:

Part 1: Surface Grav1ty aka log(g)
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Aging a Star:
Part 1: Surface Gravity aka log(g)
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Aging a Star:
Part 1: Surface Gravity aka log(g)

0 VR0V 0 O VOV VRO N O TN O VIO VRO U N VO O V0 TN V0N TR0 VIO N T V0N 0N V0N TN V0N 0T N T V0N 0N V0N TN V0N T N O O O TN T T D RO TR TR TR T e

1.0 T T T T T T T T T
A Westetal 2011
0.9 L lowg . M::;am;o
b
£ ost ks | — ' B .-
'_": 0.7} F F L I | 1.4 —
ool | -
= y | ! R =
|t ﬁ l\ L Dwarf
051 high g ” : B 1
()_.1‘ 1 1 1 1 1 1 1 1 1 1 § 1.0 -
‘\' 1] 1 | ] ] ] ] | 1 ] 1 E :
~TF high ¢ nw) 5 .
<.l S {l q o 0.8 B
5| PPk q N _
<l { £ 06k .
2| p b 5 | -
o i . Q )
U | Z oaf Giant :
Z 0 low g | L -
ol [ 4 i | CoH [0S i
14 0.2 ' "
2|2_ hig‘llg {Id 0.0L PEPUPYEPY PP TP RPN TP RPN
=l I by 6000 6500 7000 7500 8000 8500
= s} Io L.
- d ‘ Wavelength (A) Mann et al. (2012)
2 of
2 af I
=, b
< 2w B low g

0

I | | I 1 | I | A '

0 1 2 3 4 5 6 7 8 9
dM Spectral Type

Adapted from Theissen & West (2014)

16

Wednesday, July 22, 15



Aging a Star:

Part 2 Hydrogen Balmer emission
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Aging a Star:

Part 2: Hydrogen Balmer emission
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Aging a Star:
Part 2: Hydrogen Balmer emission
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Motivating Questions

< What 1s the timescale for disk dispersal around low-mass
stars?

< Multiple mechanisms play an important role in removing disks
around stars. What are the dominant dispersal mechanisms for
low-mass stars, and how does that atfect their disk evolution?

We don’t have the ability to probe ages < 100 Myr, but
the majority of our stars appear to have ages > | Gyr.
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Motivating Questions

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

< What 1s the timescale for disk dispersal around low-mass
stars?

< Multiple mechanisms play an important role in removing disks
around stars. What are the dominant dispersal mechanisms for
low-mass stars, and how does that affect their disk evolution?

hat are the possible causes of warm dust around (older)
Id stars?

Formation theories suggest that field stars should have already
dispersed their primordial disks.
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Simple Disk Modeling
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Simple Disk Modeling
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Motivating Questions

hat are the possible causes of warm dust around (older)
Id stars?

Formation theories suggest that field stars should have already
dispersed their primordial disks.

1) Primordral-disks, =——————> Stars appear to be too old.
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Motivating Questions

hat are the possible causes of warm dust around (older)
Id stars?

Formation theories suggest that field stars should have already
dispersed their primordial disks.

1) Primordral-disks, =——————> Stars appear to be too old.

2) Tidal disruption of
planetary bodies.
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Possible Clues Leading to Collisions -
T'he Grand lack Scenario
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Jupiter
Neptune comets (water)

Year 0: asteroids (rock) 3 U
at ranus
o...o .‘:r.n.. o ......... ° SO NIRIRONONNIIIWMDS

jupiter forms SO00000000000000000000

Year 70,000:
Jupiter m'mtes inwards .‘Mw . * Oo o0 o o oo 0 ®%e, ° P000000000000000000000

Year 100,000: o®
Saturn migrates to 3:2 resonance o:{-:‘w" ‘. *® s ¢ o e®e 00%, o :0.0 %e®eee See 00000

formation of terrestrial planets

Year 300,000: '.i':‘, ‘. @ §° "‘O Zo o 2@ 2 KO

outward migration

a ’ ° o« o °* o
Year 500,000: ..'.0. ¢ @ ‘ O - Y * B
end of “Grand Tack” :-‘..l’ *$ &9 e % . . oe*° O Lo
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after “Nice scenario” Mercury Earth asteroids Son Neptune
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e Sun 2A 4AU 6AU 8AUL I0AU
Adapted from Walsh et al. (2013) 929
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Possible Clues Leading to Collisions -
T'he Aepler Dichotomy

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Kepler has found lots of multi-transiting and single-transiting planetary systems.

- Both populations cannot be explained by the same planetary architecture
(Ballard & Johnson 2014).
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Possible Clues Leading to Collisions -
T'he Repler D1(:hotomy
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Kepler has found lots of multi-transiting and single-transiting planetary systems.

- Both populations cannot be explained by the same planetary architecture
(Ballard & Johnson 2014).
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Kepler has found lots of multi-transiting and single-transiting planetary systems.

- Both populations cannot be explained by the same planetary architecture
(Ballard & Johnson 2014).
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Possible Clues Leading to Collisions -
T'he Aepler Dichotomy
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(Ballard & Johnson 2014).

Kepler has found lots of multi-transiting and single-transiting planetary systems.

- Both populations cannot be explained by the same planetary architecture
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Motivating Questions

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

< What 1s the timescale for disk dispersal around low-mass
stars?

< Multiple mechanisms play an important role in removing disks
around stars. What are the dominant dispersal mechanisms for
low-mass stars, and how does that attect their disk evolution?

< What are the possible causes of warm dust around field
stars?

< Formation theories suggest that field stars should have already
dispersed their primordial disks.

&,

< How frequently do we see warm dust around low-mass
field stars?

< Potential effects on the formation of (exo-)planetary systems and
habitability of said systems.
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Back ot the Envelope

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Number of collisional events per star
(over the lifetime of stars surveyed), Ngq
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Back ot the Envelope
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Number of collisional events per star
(over the lifetime of stars surveyed), Ngq

o~

Ng S 100
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Back ot the Envelope

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Number of collisional events per star
(over the lifetime of stars surveyed), Ngq

Ny ~ 100

For solar-type stars, Ng ~ 0.2
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Motivating Questions

< How frequently do we see warm dust around low-mass
field stars?

< Potential effects on the formation of (exo-)planetary systems and
habitability of said systems.

Far more frequently than around Solar-type stars.
T'his 1s possibly due to a higher-number of terrestrial
planets formed around low-mass stars, all with close 1n
orbits.
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Current & Future Work
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SDSS Data Release 10: Over 50 million photometric
M dwarts!
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Current & Future Work
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SDSS Data Release 10: Over 50 million photometric

M dwarts!
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Final T'hought

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

It terrestrial planets around M dwarfs are prone to
collisions, this 1s just one more complication 1n finding
a “habitable” Earth analog around a low-mass star.
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Other Explanations for IR Excess
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Possible Cl L.eading to Collis:
The Kepler Dichotomy (Part 2)
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Back ot the Envelope

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

Fraction of stars observed with dust, f
Lifetime of collisional products, L
Age of stars surveyed, A

' Number of collisional events
per stav, N,

—_—

N, _Ta fmA4x10°
£) L L ~ 10° years

) | A~ 2.6 x 109 Years

/' Forsolar-type stars, Ny ~ 0.2
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Is There an Age Eftect?

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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